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Abstract 

 
Turned parts on turning centers are made up of features with profiles defined by arcs and 
lines.  An error model for turned parts must take into account not only individual feature 
errors but also how errors carry over from one feature to another.  In the case where there 
is a requirement of tangency between two features, such as a line tangent to an arc or two 
tangent arcs, any error model on one of the features must also satisfy a condition of 
tangency at a boundary point between the two features.  Splines, or piecewise 
polynomials with differentiability conditions at intermediate or knot points, adequately 
model errors on features and provide the necessary degrees of freedom to match 
constraint conditions at boundary points.  The problem of modeling errors on features 
becomes one of least squares fitting of splines to the measured feature errors subject to 
certain linear constraints at the boundaries. The solution of this problem can be 
formulated uniquely using the generalized or pseudo inverse of a matrix.  This is defined 
and the algorithm for modeling errors on turned parts is formulated in terms of splines 
with specified boundary constraints. 
 
Key Words: error modeling; generalized inverse; least squares; machine tool; pseudo 
inverse; spline 



1.0  Introduction 

 
Errors in a machined part are due to several sources.  There are errors inherent in the 

machine itself due, for example, to misalignment of slide ways and other geometric 

errors.  There are errors due to thermal deformations of the machine while operating.  

There are also errors caused by inaccurately specified tool dimensions, tool wear, tool 

and/or part deflection, and so on. We will call these types of errors the “process related 

errors”. It is the modeling of these process related errors for a turning center that will 

concern us in this report. 

 

The object of developing process error models is to apply them in error compensation 

strategies (Donmez et al. 1991) (Bandy 1991).  Process errors can be measured during 

machining (Fan and Chow 1991) or by process intermittent gauging.  Process-

intermittent gauging has an advantage in that a simple measurement device, such as a 

touch-trigger probe, can be inserted into the tool changer.  This form of probe is less 

intrusive than apparatus required for measurement during  machining.  Process-

intermittent gauging of process-related part errors usually takes place between semi-

finish and finish machining processes.  This permits on-line modeling of process-related 

errors, the results of which are then used to anticipate and compensate these errors in the 

finish process.  For a discussion of process-intermittent probing and real-time error 

compensation (Yee 1990) (Yee and Gavin 1990). 

 

One form of error compensation strategy requires interpreting a part as consisting of 

separate features.  Such a decomposition of a part is useful for establishing 
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correspondence between design information and manufacturing operations (Gupta et al. 

1995).  Part features can be defined very generally.  For a turning center, however, in 

which part geometry is defined in two dimensions, the features of concern are the arcs 

and lines that comprise the CAD profile of the part.  CAD-based methods facilitate the 

creation of pre-process data such as feature geometry, nominal coordinates of gauging 

points, and surface normal vectors. 

 

Any error model for turned parts must take into account not only errors on individual 

features but also how the errors carry over from one feature to another.  This just reflects 

the physical fact that as a tool cuts a feature of a part it transitions in a smooth manner to 

cutting the next feature.  This implies that there should not be any unintentional changes 

in slopes between features.  Therefore, a feature error model must take into account slope 

constraints at the ends of the features. 

 

Another aspect of modeling machine tool errors is the need to create model function 

forms that can be computed rapidly when the models are implemented in error 

compensation strategies.  This often means that functional forms need to be low order 

polynomials.  However, low order polynomials may or may not model all the errors on a 

machined feature.  If the geometry of a feature is broken into smaller parts, the errors on 

those smaller parts can often be modeled by low order polynomials.  If the low order 

polynomials are chosen in such a way that the slopes are made equal at the feature part 

transition points, the combined piecewise polynomial is called a spline (DeBoor 1978). 
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The error-modeling algorithm described in this report combines the use of splines, to 

model the errors within a feature, with boundary slope constraints at the ends of the 

features.  The general modeling technique involves a least squares fitting of a spline to 

process-intermittent, measured, machine-error data but with an extra requirement that  

slopes at the end of features be equal.  These are usually linear constraints so the 

algorithm can be classified as a least squares fitting of a linear model with linear end 

constraints. 

 

2.0 Modeling Errors on Features with Linear Profiles 

 

When linear features join each other the modeling does not necessarily require splines 

but splines could be used. Regardless of whether splines are used, at least two cases of 

errors usually occur.  First, if an analysis of the part errors indicates the existence of 

feature size errors only, a constant offset for either axis is sufficient to compensate the 

errors. In this case, the compensation software inserts the appropriate values in the tool 

offset update command in the numerical control (NC) program segment for the finish cut 

and all coordinates in the NC program are left at their nominal values. As an alternative 

means of compensating such errors, the compensation software also writes the axis 

offsets to a file, which is used for real-time compensation. Second, if errors are 

essentially linear but the slopes are different from those of the nominal features, the 

compensation software can adjust the finish cuts for each feature. Adjustments for 

features with nominally linear profiles are usually calculated by fitting linear functions 

through the error vectors computed at the gauge points for each cut of the part.  The 
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intersections of the linear equation for a cut with similar linear error equations for the 

neighboring cut on each side give the errors at the endpoints of the cut.  These endpoint 

errors are used to adjust the  points that are then entered into NC program for the finish 

cut and are written to a file that is used to provide data to generate real-time cut 

adjustments.  Elaboration of these procedures may be found in (Bandy and Gilsinn 1996) 

(Bandy and Gilsinn 1995a) (Bandy and Gilsinn 1995b). 

 

3.0 Modeling Errors on Features with Curved Profiles 

 

If a part contains a feature whose nominal profile is not linear, the adjustments are more 

complex. For example, when an arc smoothly meets a line or another arc, not only do the 

compensation curves intersect but the two curves must usually be tangent to each other. 

The treatment of a circular arc profile is explained in this section. The principles, 

however, can be extended to non-circular curves. 

 

Some earlier work in compensating errors on a hemispherical nose of a turned part 

showed that error compensation on arcs was feasible (Yee et al. 1992). No attempt, 

however, was made in this previous work to maintain tangencies at feature boundaries. 

Although the previous work showed that process-intermittent errors in curved features 

could be compensated, the application was limited to a turned hemisphere generated by a 

nominal arc cut, because a circle could be fitted to the probed data.  However, turning 

centers can generate other types of curved cuts, which are better fitted by spline 

modeling.  Furthermore, the previous work did not consider what would happen at the 

 5



interface between two features such as a linear feature tangent to a curved feature.  If two 

curves are fit separately to probed values on each feature, then the resulting curves might 

have a discontinuity at the nominal point of tangency. In the finish cut, this could lead to 

a significant step in the part.  Therefore, another data fitting procedure had to be 

investigated to compensate errors on general, turned, curved features that might have 

various interface angles to neighboring features. That is, a least squares technique with 

prescribed boundary conditions had to be developed. This problem cannot be treated as a 

standard least squares problem since the boundary conditions restrict the selection of the 

fitting parameters. 

 
Polynomials are useful as approximation functions to unknown and possibly very 

complex nonlinear relationships.  However, the literature on least squares regression 

models (Smith 1979) (Wold 1974) warns that it is important to keep the order of the 

polynomial models as low as possible. In an extreme case it is possible to pass a 

polynomial of order n-1 through n points so that the polynomial of sufficiently high 

degree can always be found that provides a "good" fit to the data.  The behavior of the 

polynomial between the data points may be highly oscillatory, though, and not provide 

good data interpolation. Figure 1 is a good example of the oscillatory behavior of a high 

order interpolating polynomial. The probe data in the figure represents micrometer errors 

measured on the Z-axis of travel on a turning center. Notice that the interpolating 

polynomial goes through each of the data points, but only produces a good fit between 

the data points within the mid-range of the data. The interpolating polynomial, however, 

performs large excursions near the ends of the data set. This is a typical behavior of a 

high order interpolating polynomial. 
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Figure 1: The results of interpolating with a polynomial of order 12. 
Note the large oscillation at the right end. 
 a function behaves differently in different parts of the range of the independent 

le, the usual approach is to divide the range of the independent variable into 

nts and fit an appropriate curve to each segment. Spline functions offer a way to 

m this type of piecewise polynomial fitting and provide smooth transitions, if 

d, between neighboring segments. 

s are generally defined to be piecewise polynomials of degree n. The function 

s and first n-1 derivatives are set to agree at the points where they join. The abscissa 

inates of these joining points are called knots.  Thus, a spline is a continuous 

on with n-1 continuous derivatives.  Polynomials may be considered a special case 

ines with no knots, and piecewise polynomials with fewer than the maximum 
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number of continuity restrictions may also be considered splines. The number and 

degrees of the polynomial pieces and the number and position of the knots may vary in 

different situations. 

 

Figure 2 shows the results of interpolating the same probe data as in Figure 1 but using a 

clamped spline (note that the scale of the ordinate axis is different from Figure 1). A 

clamped spline means one with prescribed derivative conditions specified at the end 

points of the data. This figure shows vividly the benefits of interpolating with spline 

functions. The ability to interpolate with piecewise polynomial allows a tighter control on 

the interpolation errors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.0 Constructing Interpolating Splines with End Constraints 
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Figure 2: Interpolating the same data from Figure 1 
using a clamped cubic spline. Note the close modeling 
of the data. 

 

It is possible to construct a basis, or sequence of functions, such that every spline of 

interest can be written in one and only one way as a linear combination of these functions 

(Montgomery and Peck 1992). General cubic splines ( n = 3) will be used since they have 
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been shown to be adequate for most practical problems. They can be written in terms of 

basis functions as follows: 

 

Let an ordered sequence of k knots be given. These can be nominal probe points, but do 

not necessarily have to be 
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This cubic spline representation has continuous first and second derivatives.  See (Smith 

1979) (Wold 1974)  for good general discussions of the use of splines in statistical data 

analysis. 

 

 

Assume that there are s sampled points in the plane given by the pairs 

and suppose that the x-values are ordered by ),(,),,( 11 ss yxyx

 

 

 

 

 

where a and b are bounds for the sequence of x-values. Since the sampled points might 

show undesired oscillations or Anoise@, some form of smoothing will be obtained by not 

selecting knots at each point. In fact, guidelines in the literature (Smith 1979) (Wold 

1974) suggest 4 to 5 points between knots.  Since this will not always be possible one can 
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The standard least squares problem of fitting a spline of the form (2) through the sample 

points can be formulated in matrix terms. To start, with define the residual at the q-th 

sample point q = 1, 2, …,s, as 
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where, for a given q-th point, t is the smallest integer so that  strq ≤≤ .  To begin 

formulating the matrix version of the least squares problem define the vectors 
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The least squares problem can now be formulated in matrix notation as 
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where the minimum is taken over all vectors c and the norm is the standard Euclidean 

norm. 

 

The splines in this application are not unrestricted at their ends, however, and this changes 

the least squares problem in this case.  In order to make the curved features match with 

neighboring features, restrictions must be placed on how the splines behave at the 

endpoints a and b of the interval.  In particular, we will require that the splines go through 

specific points with specific slopes. Therefore, we will require the following conditions be 
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can also be formulated as matrix equations. To do this, first write each of the conditions 

as 

 

 
 
then define 
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by A. It is called the generalized or pseudo inverse of A, and is denoted by A+ (Lawson 

and Hanson 1974).  

 

It is not difficult to find the generalized inverse of a matrix A if A is properly 

decomposed.  For this application one can introduce the decomposition of A called the 

singular value decomposition (Lawson and Hanson 1074).  Any m x n matrix A, whose 

number of rows m is greater than or equal to the number of columns n, can be written as 

the product of an m x n column orthogonal matrix U, an n x n diagonal matrix D, and the 

transpose of an n x n orthogonal matrix V. Symbolically 
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and tol is a tolerance that is often set in such a way that it is  related to the reciprocal of 

the maximum allowed condition number (i.e. ratio of the largest eigenvalue to the 

smallest) for the matrix D. 

 

One can now formulate the result that gives the solution to the constrained least squares 

problem (11), (16). The principal reference for this result is (Lawson and Hanson 1974). 

 

Given an m x n matrix B of rank k, an m-vector y, an r x n matrix A, and an r-vector y the 

linear least squares problem with equality constraints becomes one of finding an n-vector 

c that minimizes 
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This is just a general restatement of the problem described by (11) and (16) above. 
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Assuming that (24) is consistent, there is a unique solution that minimizes (23) subject to 

(24) (Wold 1974). It is given by 
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and In is the n x n identity matrix. For many usual cases one would have n > r = k. The 

generalized inverses are computed by the singular value decomposition technique. 

 

In order to use the spline representation of the surface errors on a part it is easier to 

evaluate the spline in its individual cubic components between knots. To do this requires 

compacting the representation of the spline polynomial as the underlying variable passes 

each knot. The algorithm is straightforward and begins by assuming that there are k 

knots. First add two knots for the end points to make k+2 knots. Thus, 
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For k internal knots there will be k+4 spline coefficients. But when these are combine to 

form groups of four coefficients for each interval there will be 4k+4 coefficients. These 

will be defined as follows: For 
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rate the use of the algorithm is shown in Figure 3. It has a step 

meter area, a long taper, a cylindrical section and a hemisphere. 

e algorithm described in this report is embedded, called Process 

nsation Software (PIECS) (Bandy and Gilsinn 1996), is used to 

rors on all of these surfaces. The tool tip selected to turn the 

en from a batch that were known to be worn but the exact nature 
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of the wear was unknown at the time of selection. The authors thought that this would be 

a good test of the algorithm, since the errors generated at the semi-finish cut would be 

unknown beforehand to the operator. The resulting semi-finish part showed errors that 

indicated the worn spot lay at approximately a 450 angle on the tool tip. This is indicated 

by the errors plotted in Figure 4. The errors are shown as scaled bars that are called 

“whiskers”.  These errors are reflected in the probed errors reported in Table 1, which are 

errors normal to the surfaces averaged for four parts. The values are in micrometers. 

After applying the spline algorithm to model the errors on the front dome and small linear 

feature to its left on the semi-finish cut, the errors were considerably reduced on the 

finish cut as shown in Table 1, and the “whiskers” plot in Figure 5. Figure 6 shows the 

spline model of the errors on the leading two features of the part with a zero slope 

specified at the boundary point with the linear feature and a slightly greater than zero 

slope specified at the part zero point near the right hand corner of Figure 6.   

 

 

6.0 Conclusions 

 

Compensation of process related errors based on process-intermittent measurements and 

modeling has shown in the past that the procedure can correct errors on parts with linear 

features (Bandy and Gilsinn 1996) (Bandy and Gilsinn 1995a) (Bandy and Gilsinn 

1995b). This procedure has been extended to correcting errors on parts with arc features. 

In order to maintain path and slope continuity between tangent features, it was necessary 

to use splines with boundary constraints. 
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The splines with constraints have been demonstrated to adequately model machining 

errors probed on semi-finished parts. These models have successfully been used to reduce 

the part errors on the finish part to a small fraction of the original errors on the semi-

finished part. In fact, the models allow the same tool that caused the errors to be used to 

correct them. Table 1 clearly shows the magnitude of reduction obtained. 

 

The algorithm presented in this report allows the splines to be represented in the compact 

form of equation (29). This ensures that the resulting polynomials are of low order so that 

they can be used in error compensation during machining processes. That is, the error 

model evaluation time is not a significant factor to the error compensation process. 
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 Figure 3: Part with Hemispherical Dome used to Test Algorithm 
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              Mean Turning Center Errors for Four Parts 

Point 
Number 

Nominal X
Gauging  

Coordinate 
(mm) 

Nominal Z
Gauging  

Coordinate 
(mm) 

Semi-
finish 
Part 
Error 
(µm) 

Finish 
Part 
Error 
(µm) 

1 63.87211 -149.1631 90.297 -0.5715 
2 60.46455 -143.0105 92.71 -0.889 
3 57.05696 -136.858 92.964 -1.651 
4 53.6494 -130.7054 94.1705 -0.762 
5 50.24184 -124.5529 92.5195 -3.175 
6 44.704 -106.934 12.446 -0.254 
7 44.704 -92.0115 11.176 -0.508 
8 44.704 -77.089 10.9855 -2.54 
9 44.704 -62.1665 11.684 -3.048 
10 44.704 -47.244 12.446 -2.286 
11 43.434 -44.704 0 0 
12 37.084 -38.354 6.731 -3.302 
13 36.99706 -34.54598 21.717 7.8105 
14 36.70041 -31.76392 31.623 3.2385 
15 36.19487 -29.01213 44.577 -1.8415 
16 35.48329 -26.30632 52.705 -4.7625 
17 34.56976 -23.66183 62.8015 -2.54 
18 33.45945 -21.09373 69.977 1.016 
19 32.15869 -18.61668 76.2 1.778 
20 30.67487 -16.24472 78.359 -0.762 
21 29.01645 -13.99139 77.2795 -3.429 
22 27.19286 -11.8695 76.7715 -1.397 
23 25.2145 -9.891141 70.9295 -3.429 
24 23.09261 -8.067548 63.5 -3.2385 
25 20.83928 -6.409131 58.8645 -1.651 
26 18.46732 -4.925314 51.435 -1.524 
27 15.99027 -3.624555 45.2755 -3.1115 
28 13.42217 -2.514244 36.83 -6.0325 
29 10.77768 -1.600708 32.9565 -5.842 
30 8.071866 -0.889127 27.432 1.651 
31 5.320081 -0.383591 8.0645 -0.8255 
32 2.538019 -0.086944 -18.733 -8.636 

 
Table 1: Semi-finish and Finish Errors for Turned 
Part 
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Figure 4: A “whiskers” plot of the Errors on the Semi-Finish 
Part 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Figure 5: “Whiskers” Plot of the Reduced Errors on the Finish
Part
24



 
 

X Part Coordinates in mm

Z Part Coordinates in mm

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5
0

5

10

15

20

25

30

35

40

45

50

Spline Model Of Errors

Linear Profile

Dome Profile

Scaled Error Bars

X Part Coordinates in mm

Z Part Coordinates in mm

Figure 6: Scaled Semi-Finish Errors in Micrometers on the Leading Dome Profile 
and Linear Feature to the Left of the Dome Profile. See Points 12 through 32 in 
Table 1. 
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